

Multicentre Preclinical Animal Research Team

Multi-PART

Work Package 3 – Experimental Design

Hanno Würbel, Denis Vivien Presented by Philip Bath

Aims and deliverables - Experimental design

- Describe the most appropriate design for future preclinical multicentre studies
 - Randomisation, blinding, sample size calculations, systematic variation
- Develop strategies to maximise both the internal and external validity of the studies performed within Multi-PART or other multi-centre research consortia

Design of Multi-PART studies

Surgery surgery, sham surgery

Treatment drug, vehicle

• Time e.g. early, late

Dose e.g. high, low

• Stroke model e.g. intraluminal filament, distal MCAO, ...

• Co-morbidities e.g. hypertension, ...

• Animal Species e.g. rat, mouse, macaque, ...

• Centre e.g. Macrae, Dirnagl, Planas, ...

Experimental design – Principles

"[Experiments] should be unbiased, be powerful, have a good range of applicability, not be excessively complex, and be statistically analysable to show the range of uncertainty in the conclusions."

(Festing, 2006)

External validity – Avoiding spurious results

- Small scale, standardised, single-centre studies are prone to produce spurious results
- Multiple small scale studies may not help sufficient power is important
- Power alone is not enough heterogeneity is crucial

→ Multi-centre studies

Design of multicenter trials

- Use mixed model stats, treat lab as random factor
- Sample of labs should represent population of labs
- Number of labs should allow estimation of between-lab variation
- Number of subjects per lab should allow estimation of withinlab variation

Design of multicenter trials – Sample sizes

Lab	n/Lab	External	Internal validity			
1	100	Poor no estimate of	Excellent f between-lab variation			
10	10	Reasonable gives estimate	Reasonable i.e. compromise s of within & between-lab variation			
100	1	Excellent no estimate of	Poor f within-lab variation			
		small sample s	sizes associated with low quality			

Internal validity – Avoiding bias

- Relevant sources of bias have long been identified (randomisation, blinding, sample size calculation, primary outcome, etc.)
- Methods for randomisation, blinding and sample size calculation are well established (e.g. CONSORT)
- Guidelines for preclinical (animal) studies have been developed (e.g. ARRIVE), but need to be implemented

Internal validity – Randomisation

 Randomisation protocols for controlled multi-centre studies are readily available (e.g. sealed envelope)

Recommendations:

- Centralised treatment allocation and randomisation
- Distance randomisation (via www, phone, sms, etc.) instead of envelopes
- Stratification as needed, e.g. by blocked randomisation with random block sizes (Efird, 2011)

Internal validity – Blind as much as possible

Level 0: Allocation concealment

→ Centralised treatment allocation

Level 1: Blinding persons interacting with animals

Level 2: Blinding persons collecting data

→ Random number lists (animals, cages, groups, etc.)

Level 3: Blinding persons assessing outcome

→ Centralised, blinded outcome assessment

Level 4: Blinding persons analysing data

→ Centralised, blinded data analysis

Statistical power – Sample size calculation

- Software for simple sample size calculations with adjustments to experimental design are readily available e.g. PASS (NCSS), G*Power
- In the simplest form, the statistical design includes treatment as a fixed factor and centre as a random factor
- If between-centre variation is unknown, sample size calculation may be based on intraclass corr. coeff. (ICC) = 0.1
 ICC reflects proportion of variance explained by centre

Future perspectives

- Use existing data to analyse different experimental designs
- Model trade-offs between variation of different factors
- Model trade-offs between number of labs and subjects/lab
- Model trade-offs between sample size and external validity

→ WP6

Multicentre Preclinical Animal Research Team

Thanks

Power vs. Replication – the Replication Paradox

Nuijten et al. 2015

External validity – Avoiding spurious results

- Small scale, standardised, single-centre studies are prone to produce spurious results
- Multiple small scale studies do not help sufficient power is important
- Power alone is not enough heterogeneity is crucial
 - → Multi-centre studies (or heterogenized single-centre studies)

ARRIVE guidelines – Endorsed but not implemented

- Survey (Reichlin et al., unpublished)
- Of 250 scientists, 79 had published their last paper in a journal that had endorsed ARRIVE
- Of these 79 scientists, 13 knew ARRIVE well; 9 had read them,
 17 had heard of them
- The remaining 40 (>50%) scientists had never even heard of the ARRIVE guidelines....

Design of multicenter trials

- Define criteria for animal models and outcomes (SOPs)
 (face, construct, and predictive; convergent and discriminant validity)
- Define standards for accreditation of centers

Design of multicenter trials – Balancing groups

Table 3: Design effects calculations for three different group distributions among centers.

Group distribution among centers	Quite homogeneous			Heterogeneous			Cluster design		
Group size per center	m _{lj}	m _{2j}	%*	m _{lj}	m _{2j}	% *	m _{lj}	m _{2j}	%*
Center I (n = 57)	16	41	28	П	46	19	0	57	0
Center 2 (n = 38)	10	28	26	24	14	63	38	0	100
Center 3 (n = 44)	H	33	25	7	37	16	0	44	0
Center 4 (n = 15)	3	12	20	- 1	14	7	0	15	0
Center 5 $(n = 41)$	9	32	22	8	33	20	0	41	0
Center 6 (n = 19)	5	14	26	10	9	53	19	0	100
Center 7 (n = 37)	8	29	22	9	28	24	0	37	0
Center 8 (n = 52)	12	40	23	4	48	8	0	52	0
Center 9 (n = 12)	3	9	25	- 1	- 11	8	0	12	0
Center 10 (n = 28)	8	20	29	10	18	36	28	0	100
S	0.14		5.79			33.77			
Deff (ρ = 0.10)	0.91			1.48			4.28		

^{*}group I proportion in each center

The global proportion of subjects in group 1 is 25%, for each group distribution, and the Intraclass Correlation Coefficient is equal to 0.10.

ARRIVE guidelines – Endorsed but not implemented

- Survey (Reichlin et al., unpublished)
- Of 250 scientists, 79 had published their last paper in a journal that had endorsed ARRIVE
- Of these 79 scientists, 13 knew ARRIVE well; 9 had read them,
 17 had heard of them